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Abstract

We present a new optimization method for nested SQL query blocks with aggregation
operators. The method is derived from the theory of dependency implication. It unifies
and generalizes previously proposed (seemingly unrelated) algorithms, and can incorporate
general database dependencies given in the database schema.

We apply our method to query blocks with MAX, MIN aggregation operators. We obtain
an algorithm which does not infer arithmetical constraints, and reduces optimization of such
query blocks to the well-studied problem of tableau equivalence. We prove a completeness
result for this algorithm: if two MAX, MIN blocks can be merged, the algorithm will detect
this fact.

1 Introduction

The practical importance of optimizing queries in relational database systems has been recog-
nized. Traditional systems optimize a given query by choosing among a set of execution plans,
which include the possible orders of joins, the available join algorithms, and the data access
methods that are used [SAC+79, JK84]. Such optimizers work well for the basic SELECT-FROM-
WHERE queries of SQL [MS93]. However, they can perform poorly on nested SQL queries, which
include, e.g., subqueries and views.

Since nesting of queries is a salient feature of the SQL language as used in practice, op-
timization of such queries was considered early on. One line of research has concentrated on
extending the traditional “selection propagation” techniques to nested queries. In these ap-
proaches, traditional optimizers are enhanced with additional execution plans, where selection
and join predicates are applied as early as possible [MFPR90a, MFPR90b, MPR90, LMS94].
Another line of work has proceeded in an orthogonal direction, introducing execution plans
which correspond to alternative structures of nesting. In particular, these approaches consider
the possibilities of merging query blocks, denesting queries, and commuting aggregation blocks
with joins [Day87, GW87, Kim82, Mur92, PHH92, YL94, HG94].

In this paper we propose an approach which unifies and generalizes the approaches mentioned
above. We apply the “selection propagation” idea to certain data dependencies that are implicit
in aggregation blocks. Propagation of SQL predicates [MFPR90a, MFPR90b, MPR90, LMS94]
is a special case of propagation of these dependencies. At the same time, propagating these
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dependencies can produce execution plans with alternative nesting structure, as in [Day87,
GW87, Kim82, Mur92, PHH92, YL94, HG94].

In addition to expressing in a common framework previously proposed query transformations
which seemed unrelated, our approach incorporates naturally general data dependencies that
may be given in the database schema. It extends transformations which commute joins with
aggregation operators and merge query blocks [Day87, PHH92, YL94, HG94], in that it does
not require adding tuple ids to the grouping addributes; and it can handle joins on aggregation
attributes as well as on grouping attributes. Also, transformations which denest subqueries
[GW87, Kim82, Mur92] only consider query blocks nested within each other, whereas our method
does not depend on the order of nesting.

We illustrate our method by means of a small example. We consider the following database
schema (of a hypothetical university database):

ids(Name, Idnum)
enrolled(Name, [dnum, Course)
timetable(Course, Hours)

The relation ids records the id numbers of students. The relation enrolled records the
courses a student is enrolled in (and his/her id number); timetable records the number of
hours a course is taught per week. These base relations do not contain duplicates.

The following dependencies are given in the database schema:

1. enrolled. Name,ldnum C ids. Name,Ildnum

2. ids: Name — Idnum

The first is an inclusion dependency (IND) stating that: every pair consisting of a student
name and id number that appears in the enrolled relation, also appears in the ids relation.
The second is a functional dependency (FD) stating that: student name is a key of the ids
relation.

In Figure 1 we show a SQL definition for a view maxhours and a nested query ).

The view maxhours gives, for each student, his id number; and the maximum number of
hours of teaching (per week) of any of the courses he is enrolled in. The view maxhours is used
to define the nested query ), which gives, for each student, his id number and the maximum
number of hours of teaching (per week) of any of the courses he is enrolled in; provided that
there exist at least two courses which are taught for at least that many hours per week.

In Figure 2 we show the result of applying our optimization method to the nested query @.

The query )’ results by transforming () in the following ways.

First, the join with the ids relation in the main block of () is eliminated. This simplification
is arrived at using the aggregation block of the view maxhours, and the dependencies of the
schema. To justify the simplification we reason informally as follows. The join with the enrolled
relation in maxhours is more restrictive than the join with the ids relation in the main block
of ), because of the IND 1. Also, the FD Name—Idnum can be seen to hold for the enrolled
relation, because of the FD 2 and the IND 1; consequently, the value of the Idnum attribute of
() can be taken from the Idnum attribute of the enrolled relation, and thus from the Idnum
attribute of maxhours (instead of the Idnum attribute of the ids relation).

The second optimization of () is that the subquery in the WHERE clause has been replaced by a
view countcourses, which gives, for each number of hours some course is taught for, the number
of courses that are taught for at least that many hours per week. Note that the common nested



iteration method of evaluating the subquery in () requires retrieving the timetable relation
once for each tuple of the view maxhours referenced in the main block of ¢). On the other hand,
()’ can be evaluated by single-level joins containing the join relations explicitly; this enables the
optimizer to use a method such as merge join [SAC+79] to implement the joins, often at a great
reduction cost over the nested iteration method [Kim82].

Observe also that the view countcourses contains the joins with the enrolled and timetable
relations, appearing in the view maxhours. Including these joins makes the view countcourses
safe, and produces a potentially cheaper execution plan, as it reduces the number of groups to
be aggregated.

Optimization algorithms for nested SQL queries are often described as algebraic transfor-
mations, operating on a query graph which captures the relevant information in the query
[MFPR90a, MFPR90b, MPR90, LMS94, Day87, GW87, Kim82, Mur92, PHH92, YL94, HG94].
In our method, we use the alternative tableau formalism that has been introduced in the context
of conjunctive queries [AHV95, UlI89]. In Section 2 we sketch how this formalism is used to
describe SQL queries.

In Section 3 we describe our optimization method; we use the chase procedure and the
concept of tableau equivalence, which have been introduced for optimizing conjunctive queries
in the presence of general data dependencies. One importance difference of SQL queries from
conjunctive queries is the presence of duplicates in the result of a typical SQL query [IR95,
CV93]. Our method optimizes correctly SQL queries where the number of duplicates is part of
the semantics, and should not be altered by optimization?.

We also describe in Section 3 how to fine-tune our method for the case of SQL queries with
MAX, MIN operators. We obtain in this case an optimization algorithm which does not infer any
arithmetical constraints.

In Section 4 we focus on the special case of merging of SQL query blocks with MAX, MIN
operators. We show that, if such merging is possible, it will be discovered by our optimization
method. Such completeness results can not hold for algebraic transformations of SQL queries:
designing complete systems of algebraic transformations requires rather technical devices, having
to do with the equality predicate [1L84].

In Section 5 we summarize our contribution, and point out some directions for further re-
search.

2 SQL Queries as Tableaux

Tableaux are a declarative formalism which captures the SELECT-PROJECT-JOIN queries of the
relational calculus. In this Section we describe (by example) a natural extension of tableaux
which expresses SQL queries with nested blocks and aggregation operators. The tableaux we
describe in this Extended Abstract express existential SQL queries, i.e., queries containing condi-
tions which have to hold for some tuples in the database. An extension to queries with universal
conditions — OUTER JOIN and null values — is described in the full paper.

For each query block we construct one tableau; subqueries or views within a query become
separate tableaux. Figure 3 shows the tableaux for our example query in Figure 1.

A typical row of a tableau has the form R(x, y, ...), where R is the name of a base relation,
a SQL predicate or a query block; and x, y, ... are variables local to the tableau, or constants.

The first row of a tableau gives the general form of a tuple in the result of the corresponding
query block; it is called the summary row, and the variables it contains are called distinguished.

!The number of duplicates is irrelevant to the semantics of our example query Q.



ids(Name, Idnum)
enrolled(Name, [dnum, Course)
timetable(Course, Hours)

1. enrolled. Name,ldnum C ids. Name,Ildnum

2. ids: Name — Idnum

V: CREATE VIEW maxhours(Name, [dnum, Hours) As
SELECT e.Name, e.ldnum, Max(t.Hours)
FROM enrolled e, timetable t
WHERE e.Course = t.Course
GROUPBY e.Name, e.Idnum

(): SELECT i.Name, i.Idnum, m.Hours
FROM 1ids i, maxhours m
WHERE m.Name = i.Name AND
2 < ( seLECT cOUNT (u.Course)
FROM timetable u
WHERE u.Hours > m.Hours )

Figure 1: Example database schema and query

()’ seLECT m.Name, m.Idnum, m.Hours
FROM maxhours m, countcourses k
WHERE m.Hours = k.Hours AND

2 < k.Count

W: CREATE VIEW countcourses(Hours, Count) As
SELECT t.Hours, counT(u.Course)
FROM enrolled e, timetable t, timetable u
WHERE e.Course = t.Course AND
u.Hours > t.Hours
GROUPBY t.Hours

Figure 2: Optimized example query



The subsequent rows of the tableau give the general form of the tuples that have to be
present in the base relations, and in the results of other query blocks; they typically contain
additional variables, called nondistinguished.

Thus, for the tableau corresponding to the view maxhours the summary row is maxhours(n,
p, hmax). The tuple (n, p, hmax) will be in the result of maxhours just in case the relation
enrolled contains some tuple (n, p, ¢); and the relation timetable contains some tuple (c, h).
Notice that ¢, h are nondistinguished variables. The last line of the tableau expresses aggregation
and grouping: it states that, for each fixed n and p, hmax is the maximum possible value of h.
A similar formulation of aggregation is described in [Klug82].

A tableau corresponding to a subquery contains non-local variables — they are local to the
tableau obtained from the enclosing query block. These variables can be thought of as special
constants of the tableau.

Thus, the tableau corresponding to the subquery in ), @Qsubguery, contains a non-local
variable H, which is local to the tableau corresponding to Q.

It is straightforward (but lenghty) to give an algorithm which will convert a SQL query to a
tableau representation; and vice versa. We defer the details to the full paper.

3 The Optimization Method

Optimization of tableaux (corresponding to conjunctive queries) has been studied extensively.
The central notion is equivalence, i.e., finding a tableau which expresses the same query and can
be evaluated more efficiently. The chase procedure is a general method to test equivalence of
tableaux, in the presence of data dependencies [AHV95, UlI89].

Our method introduces, for each query tableau, an embedded implicational dependency (EID)
[AHV95] stating that certain tuples exist and certain predicates hold in the database. In general,
we can obtain such an EID by simply replicating the tableau.

Each query tableau is subsequently optimized using the dependencies of the schema and the
EIDs introduced. The algorithm executes two passes (as in [LMS94]):

The first pass proceeds in a bottom-up way. Each tableau is optimized using the EIDs of
the tableaux it contains. We start from the tableau which contain no subqueries or views, and
finish with the top-level tableau.

In the second pass, each tableau is optimized using the EIDs of the tableaux it is contained
in, in a top-down way.

In each pass, the optimization of each tableau consists of two distinct operations:

The first operation is to introduce new predicates; and to simplify the joins, by eliminating
rows of the tableau.

The second operation is to replace subqueries by views (cf. the Introduction); it is done only
during the second pass.

We illustrate the two operations by means of our running example.

Figure 4 shows the EID obtained from the view maxhours. It states that, for each tuple (n,
p, hmax) in the result of maxhours, the relation enrolled contains a tuple (n, p, ¢); and the
relation timetable contains a tuple (¢, hmax), for some c. Notice that the EID is simpler than
the tableau of maxhours. Such simplified EIDs can be used for query blocks with the MAX, MIN
aggregation operators.

Introduction of new predicates and simplification of joins are done as follows.

The tableau is chased with the appropriate EIDs, and the dependencies of the schema. Figure
5 shows (in part) the result of applying this procedure to the tableau for ). New rows are added



Name Idnum Course Hours
maxhours | n p hmax
enrolled | n P C

timetable c h

hmax = MAX h (n, p)

Name Idnum Hours
@|n p H
ids | n P
maxhours | n p’ H
1st 2nd
<12 C
Count
Qsubquery | C

Count

Qsubquery | c-count

Course Hours

timetable | c g
1st 2nd
2|8 H

c-count = COUNT ¢

Figure 3: Tableaux for example query



Name Idnum Course Hours
maxhours | n p hmax
enrolled | n P C

timetable C hmax

Figure 4: EID from the view maxhours

to the tableau; they appear after the triple line. Chasing the second row of the original tableau
with the EID obtained from maxhours, adds the first two of the new rows. Chasing the first of
the new rows with the IND 1 of the schema adds the third new row.

The chase also adds to the tableau the SQL predicates appearing in the EIDs. In the case of
the equality predicate, variables in the tableau are equated. In Figure 5, such equating happens
by applying the FD 2 of the schema to the first and last rows; this equates p’ with p.

To simplify the joins, the tableau resulting from the chase is minimized. This is done by
examining the rows of the original tableau not used in the chase, and eliminating those which
are covered by the tuples introduced by the chase. Note that it is not necessary for the chase
itself to terminate; the tableau can still be minimized, as soon as a row as above is discovered.

Thus, the first row of the tableau in Figure 5 can be eliminated, because it is duplicated in
the last row (recall that p’ has been equated with p).

The final optimized tableau is obtained by dropping the rows that were introduced by the
chase. In our example, this gives the tableau for Q’ in Figure 6.

Remark 1 If the number of duplicates is part of the semantics of a query block, minimization
of the corresponding tableau is omitted.

Replacement of subqueries by views is done as follows.

The non-local variables of the tableau corresponding to a subquery are traced to the tableaux
they are local to. The tuples containing those variables as local, are added to the subquery
tableau. The resulting tableau is optimized by a method similar to the one used for the first
operation.

Applying this operation to the tableau Qsubguery in Figure 3 (where H is a non-local vari-
able) results in the tableau countcourses in Figure 6.

The correctness of our method is expressed in the following result.

Theorem 2 Suppose a query Q’ is oblained by oplimizing a query Q.

(i) On every database, the result of Q' contains exactly the same tuples as the result of Q.

(ii) If minimization is not used, each tuple is duplicated in the result of Q' the same number
of times as in the result of Q.

(iii) If minimization is used, each tuple is duplicated in the result of Q' at most as many
times as in the result of Q.

We defer the proof of Theorem 2 to the full paper. The argument is a straightforward
application of the properties of tableau chase and minimization, and of the results of [IR95,

CV93).



Name Idnum Course Hours
Q|n p H
ids | n P
maxhours | n p’ H
enrolled | n p’
timetable C H
ids | n p’

Figure 5: Chase on the tableau of @)

Name Idnum Hours

@’ | n p H

maxhours | n ) H

Hours Count

countcourses | H C
1st 2nd
< |2 C

Hours Count

countcourses | H c-count

Name Idnum  Course Hours

enrolled | n p’ c’
timetable c’ H
timetable c g

1st 2nd
218 H

c-count = COUNT ¢

Figure 6: Tableaux for optimized example query



(Qo: SELECT i.Name, i.ldnum, m.Hours
FROM ids i, maxhours m
WHERE m.Name = i.Name

Qb: sELECT m.Name, m.Idnum, m.Hours
FROM maxhours m

Figure 7: Example of merging aggregation blocks

4 Completeness for Merging MAX, MIN Aggregation Blocks

It is not hard to see that nested SQL query blocks without aggregation can be merged. This is the
Type-N and Type-J nesting considered in [Kim82]. Our optimization method can additionally
merge query blocks where MAX, MIN operators are used in the inner block.

An example of such merging is shown in Figure 7; our running example is varied by omitting
the last conjunct of the WHERE clause of @), to obtain Q). The optimized block is (Q),: essentially,
()o has been merged with the view maxhours.

There are cases where merging of MAX (MIN) query blocks can be shown to be impossible.
Consider again the query ) in our example. It is not hard to see that, by adding appropriately
chosen tuples to the base relations, we can change the result of Q to empty®. In contrast, this
cannot happen for Q) or its equivalent Q.

Definition 3 A query is simple if its resull cannot be changed to empty by adding tuples to the
database relations.

Proposition 4 A SQL query defined by a single MaX block is simple.

An analogous Proposition holds for SQL queries defined by a single MIN block.

By the above remarks, SQL query blocks cannot be merged into a single MAX block, unless
the query defined is simple.

We can now state our completeness result.

Theorem 5 If a SQL query is simple, the optimization method transforms il into a single MAX
block.

An analogous result holds for transforming SQL queries into a single MIN block.
The proof is rather technical; we defer it to the full paper.

5 Conclusions

We have presented a general optimization method for nested SQL queries, which unifies several
known approaches and at the same time extends them in several nontrivial ways. We have
applied our method to the case of query blocks with MAX, MIN aggregation operators. For such
queries, we have obtained an algorithm which avoids the complications of inferring arithmetical
constraints [SRSS94, NSS98]; thus, it becomes possible to use algorithms for optimizing queries

2Consider the semantics of the last conjunct of the WHERE clause of Q.



without constraints [DBS90, CR97, ASU79a, ASU79b, JKlug84, CM77] to optimize nested SQL
query blocks with MAX, MIN.

We believe our approach will be fruitfully applicable in other cases. A natural proposal is
to apply it to aggregation operators which are known to be delicate to analyze, such as COUNT
[Kim82, GW87, Mur92].

Finally, it should be possible to extend our approach to cover SQL queries with the ALL
quantifier; and incorporate other optimization algorithms [RR98, SPL96] within our general
framework.
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